Exploring Conversational Search With Humans, Assistants, and Wizards

Alexandra Vtyurina^{*1}, Denis Savenkov^{**} Eugene Agichtein^{**}, Charles L.A. Clarke^{*}

University of Waterloo*, Emory University**

Overview

Current intelligent assistants – Microsoft Cortana, Amazon Alexa, Google assistant – all have their limitations. In this work we as k^2 :

WHAT WOULD CONVERSATIONAL SEARCH LOOK LIKE WITH A TRULY INTELLIGENT ASSISTANT?

Results

The table below demonstrates the average scores reported in the exit questionnaire.

Agent	Score range	Human	Wizard	Automatic
Overall satisfaction	1-5	4.1	3.8	2.9
Able to find information	0-2	1.5	1.3	1.0
Topical quiz success	0-2	1.6	1.6	1.3

User study

- 21 participants
- 3 complex search tasks
- 3 conversational agents
- text-based Facebook Messenger interface

Search tasks

- You are writing an essay about a tax on **"junk food"**. You need to argue whether it is a good idea for a government to tax junk food and high-calorie snacks.
- You want to **reduce the use of air conditioning** in your house. You have thought that protecting the roof from being overly hot, could help you keep the house temperature low without the excessive use of AC.
- Find information about the efficiency of **hydropower**, the technology behind it and any consequences building hydroelectric dams could have on the environment.

Conversational agents

• Human agent

/	
(

	Messenger	×
\leftrightarrow \rightarrow G	☆ Secure https://www.	w ☆

Discussion and Qualitative Findings

1. Conversation context is often implied and omitted by people, but is not captured by the automated system.

Participant 19 about automatic system: "It didn't use contextual information so there was no way to expand on the previous answer it gave me."

• Automatic agent

about	human	0 0 0				0 5	8		
system:	"you have t	to think ab	out so	cial 1	norms, as	king too m	uch, b	being too stup	oid,
not giving	g them enou	igh time to	respo	ond, t	troubling	them."			

3. Trustworthiness of the sources is crucial. Even though the Automatic system did not always respond with a relevant result, it received approval for providing the answer sources. 13/21 people noticed that having the source's URL was helpful.

Participant 7:"I ... like to be able to verify the credibility of the sources used."

Design implications

Based on our findings we devised a list of recommendations for a conversational agent design.

- Maintain the conversation context. It enables short questions and comments. Formulating long sentences each time feels unnatural and takes longer.
- **Provide sources of the answers.** URL access allows users to assess the credibility of the source.

• Wizard agent

¹Work done while visiting Emory IR Lab, and both universities contributed equally. ²Drawings derived from xkcd.com

- **Consider user feedback.** Users have an opportunity to provide explicit feedback, that could help the system to get back up from failure and improve upon the previous result.
- Summarize existing opinions. Sometimes what is needed is the *experience* of other people. A good conversational system should be able to aggregate opinions and present them to the user in a short summary.

Conclusions

In this paper, we investigated human behaviour when using conversational systems for complex information seeking tasks. We also compared participant behaviour when talking to a human expert, vs. a perceived automatic system. We observed that people do not have biases against automatic systems, and are glad to use them as long as their expectations about accuracy were met.